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Abstract We report on the fabrication of low-voltage ZnO
thin-film transistors using 1% Ni-doped Ba0.6Sr0.4TiO3 as
the gate insulator. The Ni-doped BST, deposited by RF
magnetron sputtering at room temperature, significantly
reduced leakage current density to less than 6×10−9 A/cm,
as compared to a current density of 5×10−4 A/cm for
undoped BST films at 0.5 MV/cm. The ZnO thin-film
transistor with the Ni-doped BST gate insulator exhibited a
very low operating voltage of 4 V. The field-effect mobility,
the current on/off ratio and subthreshold swing were
2.2 cm2 V/s, 1.2×106, and 0.21 V/dec respectively.
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Gate insulator

Transparent ZnO films are used as active channel materials,
which exhibit n-type semiconductor characteristics with
high optical transmittance in the visible spectrum and a

wide band gap of 3.3 eV [1, 2]. ZnO thin-film transistors
(TFTs) are of particular interest because of their potential to
replace hydrogenated amorphous or polycrystalline silicon
(a-Si/H or poly-Si) TFTs. This potential exists because
good quality ZnO polycrystalline films, showing high field-
effect mobility can be grown at room temperature. Thus,
ZnO-based electronic circuits offer the possibility of low
processing costs and good compatibility with plastic
substrates [3, 4]. Furthermore, reports have been published
on the high performance of ZnO (or doped ZnO) TFTs with
moderate field-effect mobility and high on/off ratios in
active matrix organic light emitting diode (AMOLED)
applications [5, 6].

However, high operating voltages are still a major
limitation in portable and battery-powered applications
[7]. Therefore, it is important to incorporate a suitable gate
insulator to allow for a higher operating current at lower
bias voltages. In general, a high permittivity gate dielectric
or reduced dielectric thickness is needed to increase the
capacitive coupling of the gate electric field to the ZnO
channel layer. However, ZnO-TFTs with thin gate dielec-
trics show poor performance on flexible polymer substrates,
which are often characterized by rough surfaces, making
these TFTs susceptible to pinhole formation and low
manufacturing yields [7]. In order to ensure pinhole-free
coverage, the film should be significantly thicker than the
roughness of the substrate. Therefore, the use of high-k gate
dielectrics with thicknesses over 200 nm is optimal for
stable operation of low voltage ZnO-TFTs. While there
have been some promising early results for near room
temperature grown high-K gate insulators, including barium
zirconium titanate (BZT) [8], Bi1.5Zn1.0Nb1.5O7 (BZN) [2,
3, 4], Al2O3 [9], HfO2 [9, 10], and TiO2 [11], they generally
suffer from poor leakage current characteristics at voltages
above 5 V. The authors recently developed Mn-doped
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Ba0.6Sr0.4TiO3 (BST) thin films deposited at room temper-
ature as a potential candidate for gate insulators [12]. The
Mn-doped BST films could provide the required high
dielectric constant (∼24) coupled with enhanced leakage
current characteristics. This reduction in leakage current
density was achieved through the deep trapping of electrons
in the 3% Mn-doped BST films [12]. Acceptor dopants
with six-fold coordination [13], such as Mn2+ (reff=0.67 Å)
and Mn4+ (reff=0.53 Å), which occupy the B site of the
A2+B4+O2− perovskite structure, can be used to suppress the
leakage current in BST films. ZnO TFTs using a 3% Mn-
doped BST gate insulator showed a field effect mobility of
1.0 cm2/Vs and low voltage operation of less than 7 V [14].
However, the dielectric behavior of a room temperature
deposited Ni-doped BST film used as a gate insulator has not
yet been studied. In this work, we introduce Ni-doping to
reduce the leakage current of a room-temperature grown
BST gate insulator. In this regard, the suitability of a Ni-
doped BST film as a gate insulator in the fabrication of low-
voltage (∼4 V) ZnO-TFTs is investigated.

An undoped target and a 1% Ni-doped BST target with
diameters of two inches were prepared by a conventional
ceramic powder process. A BST thin film and a 1% Ni-
doped BST thin film, both with thicknesses of 200 nm,
were deposited on Pt/Ti/SiO2/Si substrates at room temper-
ature using an RF magnetron sputtering technique.
The undoped and the 1% Ni-doped BST films were
prepared using fixed power (80 W) in an Ar/O2 (ratio=
1:1) atmosphere at a total pressure of 50 mTorr. For
electrical measurements, 100-nm-thick Pt top electrodes
A¼ 4� 10�4 cm2
� �

were deposited through a shadow
mask on top of the BST and the Ni-doped BST films by
DC magnetron sputtering. The dielectric properties for the
undoped and the Ni-doped BST films were measured at
1 MHz using an HP4192A impedance analyzer. Current–
voltage (I–V) characteristics were measured with a
semiconductor parameter analyzer (HP4155A). In these
measurements, the voltage step and delay time were 0.05 V
and 0 s. ZnO-TFTs were fabricated to further demonstrate
the advantages of the 1% Ni-doped BST films as gate
insulators. First, a 100-nm-thick Cr gate electrode was
deposited by DC magnetron sputtering onto a glass
substrate. Then, 200-nm-thick 1% Ni-doped BST gate
dielectrics were deposited onto the Cr covered glass
substrate by RF magnetron sputtering at room temperature.
A ZnO channel layer was deposited at room temperature by
sputtering at an RF power of 60 W, a working pressure of
20 mTorr, and in a pure Ar gas atmosphere, to a thickness
of 100 nm. The transistors were completed by the
evaporation of 100 nm-thick Al top contacts through
shadow masks to obtain a channel length of 50 μm and
width of 2,000 μm. This was followed by annealing at
300°C for 1 hr in a forming gas ambient (5% H2+95% N2)

to improve the ZnO-TFTs performance. The electrical
characterization of the ZnO-TFTs was carried out with an
HP4155A precision semiconductor parameter analyzer.

Figure 1 shows the dielectric constant-electric field
characteristics of undoped and 1% Ni-doped BST thin
films grown on Pt electrodes at room temperature. The
undoped and the 1% Ni-doped BST thin films exhibited
relatively high dielectric constants of 28.5 and 26.5,
respectively. It is likely that the 1% Ni doping on BST
films caused a slightly lower dielectric constant due to the
lower valence state, i.e. the dominant valence state, of Ni
(Ni2+, reff=0.69 Å) as compared to that of Ti (Ti4+, reff=
0.605 Å), which occupies an octahedral site of the
(Ba,Sr)TiO3 perovskite structure [15]. The effective di-
electric constant (εr ∼ 26.5) of the 1% Ni-doped BST films
remained high enough to achieve low-voltage operation of
less than 4 V in ZnO-TFTs. No measurable variation was
observed up to voltages of 0.25 MV, ensuring a voltage-
independent oxide capacitance.

Figure 2 shows the I–V characteristics of the undoped
and the 1% Ni-doped BST thin films measured in a metal–
insulator–metal (MIM) configuration as a function of
applied bias voltage. The undoped BST thin film showed
poor leakage current properties, for example, a low
breakdown strength at 0.4 MV/cm. On the other hand, the
measured leakage current density of the 1% Ni-doped BST
film remained on the order of ∼5×10−9 A/cm2, even up to
an applied electric field of 0.35 MV/cm (7 V), which
represents a significant improvement. The breakdown
strength was improved by over 2 MV/cm (not shown). It
is revealed from spectroscopic ellipsometry and molecular
orbital consideration that the lower leakage current in the
1% Ni-doped BST films is attributed to shallower defect
level and lower defect density below the conduction band

Fig. 1 Dielectric constant-electric field characteristics of pure BST
and 1% Ni-doped BST films with the MIM (metal–insulator–metal)
configuration
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edge than undoped BST thin film (Seo et al., unpublished
data).

Figure 3 shows AFM (atomic force microscopy) images
of the surface morphology of the undoped and the 1% Ni-

doped BST films. The RMS values (standard deviation
from the average height of the surface) on 5×5 μm of the
undoped and 1% Ni-doped BST films were 1.094 and
0.68 nm, respectively. The 1% Ni-doped BST film
exhibited a smoother surface, which can induce good
interface characteristics and stable ZnO-TFT operation.

To investigate the advantages of the 1% Ni-doped BST
films as gate insulators, ZnO-TFTs were fabricated on glass
substrates. A schematic cross-sectional view of our device
is shown in Fig. 4(a).

Figure 4(b) shows the drain-to-source current (IDS) as a
function of drain-to-source voltage (VDS) at various gate
voltages in ZnO-TFTs with 1% Ni-doped BST gate
insulators. The ZnO-TFTs exhibited normal off-behavior,
which operates via the accumulation of carriers. We conclude
that the carriers are electrons because IDS is nonzero for
positive VDS. The relatively high capacitance of the 1%
Ni-doped BST gate insulators resulted in a low-voltage
operation of 4 V. Good current saturation and a high on-
current of 53 μA at the bias condition (VGS=4 V and VDS=
5 V) were observed. Figure 4(c) shows the transfer
characteristics of the ZnO-TFTs. The threshold voltage
(Vth) was calculated from the x-axis intercept of the square
root of the IDS vs. VGS plot. The field-effect mobility (μFE)
modeled by the equation, IDS ¼ WCi=2Lð ÞmFE VGS � Vthð Þ2,

Fig. 3 AFM images of the surface morphology of (a) pure BST, and
(b) 1% Ni-doped BST films

Fig. 4 (a) Schematic cross-sectional view of ZnO-TFTs structure with
200 nm-thick 1% Ni-doped BST gate insulator, (b) Drain-to-source
current (IDS) vs drain-to-source voltage (VDS) curves at various gate-
to-source voltages (VGS) for ZnO-TFTs with 1% Ni-doped BST gate
insulators on glass substrates [channel length (L) of 50 μm and
channel width (W) of 2,000 μm]. (c) Transfer characteristics. VGS was
swept from −5 to 10 V at a VDS of 4 V

Fig. 2 Current density-electric field characteristics of pure BST and
1% Ni-doped BST films. The inset emphasizes a schematic structure
for Ni substitution into the Ti site in the Ba0.6Sr0.5TiO3 lattice

78 J Electroceram (2009) 23:76–79



can be calculated from the slope of the plot of IDSj j1=2 versus
VGS in the saturation region (VGS=4 V), where L is the
channel length, W is the channel width, Ci is the capacitance
per unit area of the insulating layer, Vth is the threshold
voltage, and μFE is the field-effect mobility. The measured
Vth and μFE were +2.7 V and 2.2 cm2/Vs for ZnO-TFTs with
a 1% Ni-doped BST gate insulator. The measured subthresh-
old swing was 0.21 V/dec. The on-current and off-current
ratios were 1.86×10−4 and 2.90×10−9 A, giving an on/off
current ratio of 1.2×106.

In summary, 1% Ni-doped BST films with a high
dielectric constant (εr ∼ 26.5) and low leakage current
(<∼5×10−9 at 7 V) were prepared at room temperature by
RF sputtering. A reduction in leakage current density was
achieved through shallower trap level and lighter trap
density in 1% Ni-doped BST films. ZnO-TFTs using the
1% Ni-doped BST gate insulators (200 nm) exhibited low-
voltage operation of less than 4 V and a high field-effect
mobility of 2.2 cm2/Vs. The results of this work demonstrate
the potential for use of a 1% Ni-doped BST film as a high-k
gate insulator for low-voltage ZnO thin-film transistors.
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